Capitulation of the $\mathbf{2}$-ideal class group of the fields $K=Q\left(\sqrt{q_{1} q_{2}}, \sqrt{p q_{1} q_{3}}\right)$ where p, q_{1}, q_{2} and q_{3} are distinct primes such that
 $$
p \equiv-q_{1} \equiv-q_{2} \equiv-q_{3} \equiv 1(\bmod 4)
$$

A. ELMAHI, A. AZIZI, A. MOUHIB, and M. ZIANE

Abstract

Let $K=\mathbb{Q}\left(\sqrt{q_{1} q_{2}}, \sqrt{p q_{1} q_{3}}\right)$, be real biquadratic number field where, p, q_{1}, q_{2} and q_{3} be distinct prime numbers with $p \equiv-q_{1} \equiv-q_{2} \equiv-q_{3} \equiv 1(\bmod 4)$. Let $K_{2}^{(1)}$ be the Hilbert 2-class field of K. Let $K_{2}^{(2)}$ be the Hilbert 2-class field of $K_{2}^{(1)}$ and $K^{(*)}$ the genus field of K. We suppose that $K_{2}^{(1)} \neq K^{(*)}$ and $\operatorname{Gal}\left(K_{2}^{(1)} / K\right) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. We study the capitulation problem of the 2 -ideal classes of K in the sub-extensions of $K_{2}^{(1)} / K$ and we determine the structure of $\operatorname{Gal}\left(K_{2}^{(2)} / K\right)$.

Keywords- fundamental unit, Hilbert 2-class field, ideal class group, class number, genus field.

1. Introduction

Let K be an algebraic number field and C_{K} its ideal class group in the ordinary sence. Suppose L is a finite algebraic number extension of K . Then there is a canonical homomorphism

$$
j: C_{K} \rightarrow C_{L}
$$

induced by extension of ideals. Then $\operatorname{ker}(\mathrm{j})$ consists of those ideal classes in K which capitulate in L . One of the main goals in capitulation theory is to determine $\operatorname{ker}(\mathrm{j})$.

If $K_{2}^{(1)}$ is the Hilbert 2-class field of K, then by class field theory the Galois group $\operatorname{Gal}\left(K_{2}^{(1)} / K\right)$ and the 2-class group $C_{2, K}$ of K are canonically isomorphic. Let $K_{2}^{(n)}$ be the Hilbert 2-class field of $K_{2}^{(n-1)}$, then $K_{2}^{(n)} / K$ is a Galois extension for each non negative integer n and

$$
K \subset K_{2}^{(1)} \subset K_{2}^{(2)} \subset \ldots \ldots . \subset K_{2}^{(n)} \subset \ldots \ldots \ldots
$$

is the 2-Hilbert class tower of field K . terminates at $K_{2}^{(1)}$ or $K_{2}^{(2)}$ [10].

In the following, we give some known results about the structure of Galois group $\operatorname{Gal}\left(K_{2}^{(2)} / K\right)$ where $C_{2, K}$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ (see, for instance, [4], Section 1). Let K be an algebraic number field such that $C_{2, K} \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, and let G be the Galois group of $K_{2}^{(2)} / K$. Then if G^{\prime} is the commutator subgroup of G, we have $G^{\prime}=\operatorname{Gal}\left(K_{2}^{(2)} / K_{2}^{(1)}\right)$, and

$$
G / G^{\prime} \simeq \operatorname{Gal}\left(K_{2}^{(1)} / K\right) \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}
$$

Let Q_{m}, D_{m}, S_{m} be the quaternion, dihedral and semidihedral groups of order 2^{m}, So that in term of generators and relations,

$$
\begin{aligned}
& Q_{m}=\left\langle x, y \mid x^{2^{m-2}}=y^{2}=a, a^{2}=1, y^{-1} x y=x^{-1}\right\rangle \\
& D_{m}=\left\langle x, y \mid x^{2^{m-1}}=y^{2}=1, y^{-1} x y=x^{-1}\right\rangle \\
& S_{m}=\left\langle x, y \mid x^{2^{m-1}}=y^{2}=1, y^{-1} x y=x^{2^{m-2}-1}\right\rangle
\end{aligned}
$$

By [2, Theorem 4.5, Chap 5] we have G is isomorphic to D_{m}, Q_{m} or S_{m}. The commutator subgroup G^{\prime} of G is always cyclic: $G^{\prime}=\left\langle x^{2}\right\rangle$. The group G has exactly three sub-groups of index 2. Namely, $\langle x\rangle ;\left\langle x^{2}, y\right\rangle$ and $\left\langle x^{2}, x y\right\rangle$. When G is not the quaternion group of order 8 , only one of the three maximal sub-groups of G is cyclic. When $m \geq 4$ the other two maximal sub-groups of G are not abelian and their maximal abelian factor groups are again isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. Of course, when G is the quaternion group of order 8 its three maximal subgroups are cyclic and when G is the dihedral group of order 8 , its three sub-groups are abelian. None of the proper factor groups of G is of quaternion type. According to what we just said, the Hilbert 2-class field tower of K terminates in at most two steps. If $K_{2}^{(1)} \neq K_{2}^{(2)}$, then the Galois group $\operatorname{Gal}\left(K_{2}^{(2)} / K_{2}^{(1)}\right)$ is cyclic and $\operatorname{Gal}\left(K_{2}^{(2)} / K\right)$ is a quaternion, dihedral or semidihedral group.
Let $K=\mathbb{Q}\left(\sqrt{q_{1} q_{2}}, \sqrt{p q_{1} q_{3}}\right)$ be a biquadratic number field where $p \equiv-q_{1} \equiv-q_{2} \equiv-q_{3} \equiv 1(\bmod 4)$. In this paper, we first give a rank for some reel biquadratic number fields. Then, in section 3 we give the Hasse unit index for some real biquadratic number fields and we give the list of real biquadratic number field K such that its 2- ideal class group of K is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ (Theoreme 3.4). In the last section we give the 2 -ideal classes of K, which capitulate in the genus field of K. Consequently we prove the following:

Theorem 1.1. Let p, q_{1}, q_{2}, q_{3} be distinct primes with $p \equiv-q_{1} \equiv-q_{2} \equiv-q_{3} \equiv 1(\bmod 4)$ and $K=$ $\mathbb{Q}\left(\sqrt{q_{1} q_{2}}, \sqrt{p q_{1} q_{3}}\right)$. Assume that the 2 -ideal class group of K is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, then:

1. If $K_{2}^{(2)}=K_{2}^{(1)}$ we have $\operatorname{Gal}\left(K_{2}^{(2)} / K\right)$ is abelien.
2. If $K_{2}^{(1)} \neq K_{2}^{(2)}$ we have $\operatorname{Gal}\left(K_{2}^{(2)} / K\right)$ is dihedral.
[^0]
2. Rank of 2-ideal class group of some real biquadratic number fields

The following notations will be used throughout the paper:

K a real biquadratic number field
$\mathrm{k}=\mathbb{Q}(\sqrt{m})$ a quadratic subfield of K with
odd class number
E the group of units of k
N the norm map
r the number of primes of k which
are ramified in K e a positive integer defined by
$2^{e}=\left[E: E \cap N\left(K^{*}\right)\right]$
ε_{m} the fundamental unit of $\mathbb{Q}(\sqrt{m})$
$\mathrm{h}(\mathrm{K})$ the class number of K
$h_{2}(K)$ the 2-part of $\mathrm{h}(\mathrm{K})$
$h(m)$ the class number for the quadratic
number field $\mathbb{Q}(\sqrt{m})$
$C_{2, K}$ the 2-ideal class group of K
$K^{(*)}$ the genus field of K
$K_{2}^{(1)}$ the Hilbert 2-class field of K
$K_{2}^{(2)}$ the Hilbert 2-class field of $K_{2}^{(1)}$
Q_{K} the hasse unit index of the
biquadratic number field K
$\left(\frac{a, d}{\mathcal{P}}\right)$ the Hilbert's 2-th power
norm residue symbol $\bmod \mathcal{P}$
Lemma 2.1. We keep the same notation as above, the rank of $C_{2, K}$ is equal to $r-e-1$.

Proof. See [1]

Remark 2.2. We have:

1) $\mathrm{e}=0$ if and only if -1 and ε_{m} are norms in the extension K / k.
2) $\mathrm{e}=1$ if and only if -1 is a norm and ε_{m} is not a norm, or -1 is not a norm and ε_{m} or $-\varepsilon_{m}$ is a norm in the extension K / k.
3) $\mathrm{e}=2$ if and only if $-1, \varepsilon_{m}$ and $-\varepsilon_{m}$ are not norms in the extension K / k.

Lemma 2.3. Let F be a real quadratic number field with fundamental unit ε and discriminant D. Suppose that $N_{F / \mathbb{Q}}(\varepsilon)=1$. Then there exists a positive square free integer m dividing D such that $m \varepsilon$ is a square in F.

Proof. See [5]

Remark 2.4. In the proof of lemma 2.3 [see 5], the integer m is norm in the extension F / \mathbb{Q}.

Lemma 2.5. Let p, q_{1}, q_{2}, q_{3} be distinct primes with $p \equiv-q_{1} \equiv-q_{2} \equiv-q_{3} \equiv 1(\bmod 4)$, and $K=\mathbb{Q}\left(\sqrt{q_{1} q_{2}}, \sqrt{p q_{1} q_{3}}\right)$. Then, we have:

1) $e=0$ if and only if one of the following conditions is satisfied:
(i) $\left(\frac{q_{1} q_{2}}{p}\right)=\left(\frac{q_{1} q_{2}}{q_{3}}\right)=-1$.
(ii) $\left(\frac{q_{1}}{p}\right)=\left(\frac{q_{2}}{p}\right)^{q_{3}}=-\left(\frac{q_{1} q_{2}}{q_{3}}\right)=1$.
2) $e=1$ if and only if one of the following conditions is
satisfied:
(i) $\left(\frac{q_{1} q_{2}}{p}\right)=-\left(\frac{q_{1} q_{2}}{q_{3}}\right)=-1$.
(ii) $\left(\frac{q_{1}^{p}}{p}\right)=\left(\frac{q_{2}}{p}\right) \stackrel{q_{3}}{=}\left(\frac{q_{1} q_{2}}{q_{3}}\right)=-1$.
(iii) $\quad\left(\frac{q_{1}}{p}\right)=\left(\frac{q_{2}}{p}\right)=\left(\frac{q_{3} q_{2}}{q_{3}}\right)=1$.

Proof. The discriminant of $\mathbb{Q}\left(\sqrt{q_{1} q_{2}}\right)$ is equal to $q_{1} q_{2}$, by lemma 2.3 there exists an integer $m \mid q_{1} q_{2}$ such that m is a norm in the extension $\mathbb{Q}\left(\sqrt{q_{1} q_{2}}\right) / \mathbb{Q}$ [see remark 2.4] and $\sqrt{m \varepsilon_{q_{1} q_{2}}} \in \mathbb{Q}\left(\sqrt{q_{1} q_{2}}\right)$. Since $\varepsilon_{q_{1} q_{2}}$ is the fundamental unit of $\mathbb{Q}\left(\sqrt{q_{1} q_{2}}\right)$ then m must be contained in $\left\{q_{1}, q_{2}\right\}$. Either way, we can conclude that:

$$
\begin{equation*}
\sqrt{q_{1} \varepsilon_{q_{1} q_{2}}} \in \mathbb{Q}\left(\sqrt{q_{1} q_{2}}\right) \text { or } \sqrt{q_{2} \varepsilon_{q_{1} q_{2}}} \in \mathbb{Q}\left(\sqrt{q_{1} q_{2}}\right) \tag{1}
\end{equation*}
$$

Consequently $\varepsilon_{q_{1} q_{2}}=q_{1} u^{2}$ or $\varepsilon_{q_{1} q_{2}}=q_{1} v^{2}$ with u and v are in $\mathbb{Q}\left(\sqrt{q_{1} q_{2}}\right)$.
It is easy to see that the primes of $\mathbb{Q}\left(\sqrt{q_{1} q_{2}}\right)$ ramified in K are exactly those lying above p and q_{3}. Denote $S=\left\{p, q_{3}\right\}$, and \mathcal{P} a prime ideal of $\mathbb{Q}\left(\sqrt{q_{1} q_{2}}\right)$ which is ramified in K lying above $\ell \in S$,
-if ℓ remain inert in $\mathbb{Q}\left(\sqrt{q_{1} q_{2}}\right)$, then we have:

$$
\begin{aligned}
\left(\frac{-1, p q_{1} q_{3}}{\mathcal{P}}\right) & =\left(\frac{N_{\mathbb{Q}\left(\sqrt{q_{1} q_{2}}\right) / \mathbb{Q}}(-1), p q_{1} q_{3}}{\ell}\right)=1 \\
\left(\frac{\varepsilon_{q_{1} q_{2}}, p q_{1} q_{3}}{\mathcal{P}}\right) & =\left(\frac{N_{\mathbb{Q}\left(\sqrt{q_{1} q_{2}}\right) / \mathbb{Q}}\left(\varepsilon_{q_{1} q_{2}}\right), p q_{1} q_{3}}{\ell}\right)=1
\end{aligned}
$$

-if ℓ is decomposed in $\mathbb{Q}\left(\sqrt{q_{1} q_{2}}\right)$, then we have:

$$
\left(\frac{\varepsilon_{q_{1} q_{2}}, p q_{1} q_{3}}{\mathcal{P}}\right)=\left(\frac{q_{1} u^{2}, p q_{1} q_{3}}{\mathcal{P}}\right)=\left(\frac{q_{1}, p q_{1} q_{3}}{\mathcal{P}}\right)=\left(\frac{q_{1}}{\ell}\right) .
$$

Using remark 2.2, the lemma 2.5 follows immediately.
Lemma 2.6. Let p, q_{1}, q_{2}, q_{3} be distinct prime numbers with $p \equiv-q_{1} \equiv-q_{2} \equiv-q_{3} \equiv 1(\bmod 4)$ and $K=$ $\mathbb{Q}\left(\sqrt{q_{1} q_{2}}, \sqrt{p q_{1} q_{3}}\right)$. Then the 2-ideal class group of K is of rank equal to 2 if and only if the following condition is satisfied:

$$
\left(\frac{p}{q_{1}}\right)=\left(\frac{p}{q_{2}}\right)=1,
$$

Proof. By lemma 2.1 the rank of $C_{2, K}$ is equal to r-e-1. The positive integer e is given by lemma 2.5 . One can compute the positive integer r and the lemma follows.
Lemma 2.7. Let p, q_{1}, q_{2}, q_{3} be distinct prime numbers with $p \equiv-q_{1} \equiv-q_{2} \equiv-q_{3} \equiv 1(\bmod 4)$ and $L=\mathbb{Q}\left(\sqrt{q_{1} q_{3}}, \sqrt{p q_{1} q_{2}}\right)$. Then the 2 -ideal class group of L is cyclic if and only if one of the following conditions is satisfied:

1) $\left(\frac{q_{1} q_{3}}{p}\right)=-1$.
2) $\left(\frac{q_{1}^{p}}{p}\right)=\left(\frac{q_{3}}{p}\right)=\left(\frac{q_{1} q_{2}}{q_{3}}\right)=-1$.
3) $\left(\frac{q_{1}}{p}\right)=\left(\frac{q_{3}}{p}\right)=-\left(\frac{q_{3}}{q_{2}}\right)=-\left(\frac{q_{3}}{q_{2}}\right)=-1$.
4) $\left(\frac{q_{1}}{p}\right)=\left(\frac{q_{3}}{p}\right)=\left(\frac{q_{1}}{q_{2}}\right)=\left(\frac{q_{3}}{q_{2}}\right) \stackrel{q_{2}}{=}-1$.

Proof. With the same technique used in proof for lemma 2.5 , one can compute a positive integer e for biquadratic field L , and using lemma 2.1 we verify that the 2-ideal class group of L is of rank equal to 1 , if and only if one of condition 1), 2), 3), 4) of lemma 2.7 is satisfied.

3. The Hasse unit index for some real biquadratic fields

Lemma 3.1. Let p, q_{1}, q_{2} and q_{3} be a distinct prime numbers such that, $p \equiv-q_{1} \equiv-q_{2} \equiv-q_{3} \equiv 1(\bmod 4)$ and $\left(\frac{p}{q_{1}}\right)=\left(\frac{p}{q_{2}}\right)=-\left(\frac{p}{q_{3}}\right)=1$. Then the biquadratic number field, $K=\mathbb{Q}\left(\sqrt{q_{1} q_{2}}, \sqrt{p q_{1} q_{3}}\right)$ contains the following units:

$$
\sqrt{\varepsilon_{q_{1} q_{2}} \varepsilon_{p q_{1} q_{3}}}, \sqrt{\varepsilon_{q_{1} q_{2}} \varepsilon_{p q_{2} q_{3}}}
$$

Consequently $Q_{K}=4$.
Proof. The discriminant of $\mathbb{Q}\left(\sqrt{p q_{1} q_{3}}\right)$ is equal to $p q_{1} q_{3}$, then there exists an integer $m \mid p q_{1} q_{3}$ such that $\sqrt{m \varepsilon_{p q_{1} q_{3}}} \in$ $\mathbb{Q}\left(\sqrt{p q_{1} q_{3}}\right)$. Since $\varepsilon_{p q_{1} q_{3}}$ is the fundamental unit of $\mathbb{Q}\left(\sqrt{p q_{1} q_{3}}\right)$ then $m \notin\left\{1, p q_{1} q_{3}\right\}$. On other hand since $\left(\frac{p}{q_{3}}\right)=-1$ then $p, q_{3}, q_{1} q_{3}, p q_{3}$ are not a norms in the extension $\mathbb{Q}\left(\sqrt{p q_{1} q_{3}}\right) / \mathbb{Q}$ so $m \notin\left\{p, q_{3}, p q_{3}, q_{1} q_{3}\right\}$ and we have $\sqrt{m \varepsilon_{p q_{1} q_{3}}} \in \mathbb{Q}\left(\sqrt{p q_{1} q_{3}}\right)$ such that $m \mid p q_{1} q_{3}$ and $m \notin\left\{1, p, q_{3}, p q_{3}, q_{1} q_{3}, p q_{1}, p q_{1} q_{3}\right\}$.
Either way we can conclude that:

$$
\begin{equation*}
\sqrt{q_{1} \varepsilon_{p q_{1} q_{3}}} \in \mathbb{Q}\left(\sqrt{p q_{1} q_{3}}\right) \tag{2}
\end{equation*}
$$

With the same reason we have:

$$
\begin{equation*}
\sqrt{q_{2} \varepsilon_{p q_{2} q_{3}}} \in \mathbb{Q}\left(\sqrt{p q_{2} q_{3}}\right) \tag{3}
\end{equation*}
$$

Consequently, using (1), (2) and (3), we obtain that the unit $\sqrt{\varepsilon_{q_{1} q_{2}} \varepsilon_{p q_{1} q_{3}}}, \sqrt{\varepsilon_{q_{1} q_{2}} \varepsilon_{p q_{2} q_{3}}}$ are contained in K consequently $Q_{K}=4$.

Lemma 3.2. Let p, q_{1}, q_{2} and q_{3} be distinct prime numbers such that, $p \equiv-q_{1} \equiv-q_{2} \equiv-q_{3} \equiv 1(\bmod 4)$, and $\left(\frac{p}{q_{1}}\right)=\left(\frac{p}{q_{1}}\right)=\left(\frac{p}{q_{3}}\right)=1$. Then the biquadratic number field, $K=\mathbb{Q}\left(\sqrt{q_{1} q_{2}}, \sqrt{p q_{1} q_{3}}\right)$ contains exactly one of the following units:

$$
\sqrt{\varepsilon_{q_{1} q_{2}} \varepsilon_{p q_{1} q_{2}}}, \sqrt{\varepsilon_{p q_{2} q_{3}} \varepsilon_{p q_{2} q_{3}}}, \sqrt{\varepsilon_{q_{1} q_{2}} \varepsilon_{p q_{1} q_{2}} \varepsilon_{p q_{2} q_{3}}}
$$

Consequently, $Q_{K}=2$.
Proof. The discriminant of $\mathbb{Q}\left(\sqrt{p q_{1} q_{2}}\right)$ is equal to $p q_{1} q_{2}$, then there exists an integer $m \mid p q_{1} q_{2}$ such that, $\sqrt{m \varepsilon_{p q_{1} q_{2}}} \in \mathbb{Q}\left(\sqrt{p q_{1} q_{2}}\right)$, since $\varepsilon_{p q_{1} q_{2}}$ is the fundamental unit of $\mathbb{Q}\left(\sqrt{p q_{1} q_{2}}\right)$ then $m \notin\left\{1, p q_{1} q_{2}\right\}$, therefore:

$$
\sqrt{m \varepsilon_{p q_{1} q_{2}}} \in \mathbb{Q}\left(\sqrt{p q_{1} q_{2}}\right)
$$

With $m \in\left\{p, q_{1}, q_{2}, p q_{1}, p q_{2}, q_{1} q_{2}\right\}$ similarly we have,

$$
\sqrt{m \varepsilon_{p q_{1} q_{3}}} \in \mathbb{Q}\left(\sqrt{p q_{1} q_{3}}\right)
$$

With $m \in\left\{p, q_{1}, q_{3}, p q_{1}, p q_{3}, q_{1} q_{3}\right\}$ consequently using (1), (4) and (5) we obtain that exactly one of the units

$$
\sqrt{\varepsilon_{q_{1} q_{3}} \varepsilon_{p q_{1} q_{2}}}, \sqrt{\varepsilon_{p q_{1} q_{2}} \varepsilon_{p q_{2} q_{3}}}, \sqrt{\varepsilon_{q_{1} q_{2}} \varepsilon_{p q_{1} q_{2}} \varepsilon_{p q_{2} q_{3}}}
$$

is contained in K , so $Q_{K}=2$.

Lemma 3.3. Let p, q_{1}, q_{2} and q_{3} be distinct prime numbers such that, $p \equiv-q_{1} \equiv-q_{2} \equiv-q_{3} \equiv 1(\bmod 4)$, and
$\left(\frac{p}{q_{1}}\right)=\left(\frac{p}{q_{2}}\right)=-\left(\frac{p}{q_{3}}\right)=1$. Then the biquadratic number field, $L=\mathbb{Q}\left(\sqrt{q_{1} q_{3}}, \sqrt{p q_{1} q_{2}}\right)$ contains exactly one of the following units:

$$
\sqrt{\varepsilon_{q_{1} q_{3}} \varepsilon_{p q_{1} q_{2}}}, \sqrt{\varepsilon_{p q_{1} q_{2}} \varepsilon_{p q_{2} q_{3}}}, \sqrt{\varepsilon_{q_{1} q_{2}} \varepsilon_{p q_{1} q_{2}} \varepsilon_{p q_{2} q_{3}}}
$$

Consequently $Q_{L}=2$.
Proof. We have:

$$
\begin{equation*}
\sqrt{q_{1} \varepsilon_{q_{1} q_{3}}} \in \mathbb{Q}\left(\sqrt{q_{1} q_{3}}\right) \tag{6}
\end{equation*}
$$

Using (3), (4) and (6) we obtain that exactly one of the unit,

$$
\sqrt{\varepsilon_{q_{1} q_{3}} \varepsilon_{p q_{1} q_{2}}}, \sqrt{\varepsilon_{p q_{1} q_{2}} \varepsilon_{p q_{2} q_{3}}}, \sqrt{\varepsilon_{q_{1} q_{2}} \varepsilon_{p q_{1} q_{2}} \varepsilon_{p q_{2} q_{3}}}
$$

is contained in L so $Q_{L}=2$.
As a consequence we have the list of real biquadratic number fields $K=\mathbb{Q}\left(\sqrt{q_{1} q_{2}}, \sqrt{p q_{1} q_{3}}\right)$ such that $C_{2, K}$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.

Theorem 3.4. Let p, q_{1}, q_{2} and q_{3} be distinct prime numbers such that, $p \equiv-q_{1} \equiv-q_{2} \equiv-q_{3} \equiv 1(\bmod 4)$ and let $K=\mathbb{Q}\left(\sqrt{q_{1} q_{2}}, \sqrt{p q_{1} q_{3}}\right)$ be a biquadratic number field. The 2-ideal class group of K is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ if and only if the following condition is satisfied:

$$
\left(\frac{p}{q_{1}}\right)=\left(\frac{p}{q_{2}}\right)=-\left(\frac{p}{q_{3}}\right)=1
$$

Proof. In [7] the class number for K is given by:

$$
h(K)=\frac{Q_{K} h\left(p q_{1} q_{3}\right) h\left(p q_{2} q_{3}\right)}{4}
$$

assume that $C_{2, K} \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, then $\operatorname{rank}\left(C_{2, K}\right)=2$. By lemma 2.6 we have

$$
\left(\frac{p}{q_{1}}\right)=\left(\frac{p}{q_{2}}\right)=1 .
$$

1) If $\left(\frac{p}{q_{3}}\right)=1$, by [3] we have $4 \mid h\left(p q_{1} q_{3}\right)$ and $4 \mid h\left(p q_{2} q_{3}\right)$. On other hand by lemma 3.2, $Q_{K}=2$, therefore $8 \mid h(K)$. Consequently $C_{2, K}$ is not isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
2) If $\left(\frac{p}{q_{3}}\right)=-1$, by [3] we have,
$h\left(p q_{1} q_{3}\right) \equiv h\left(p q_{2} q_{3}\right) \equiv 2(\bmod 4)$ and by lemma 3.1 we have $Q_{K}=4$, then $h_{2}(K)=4$. The 2-ideal class group of K is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
Suppose now that $\left(\frac{p}{q_{1}}\right)=\left(\frac{p}{q_{2}}\right)=-\left(\frac{p}{q_{3}}\right)=1$, by lemma 2.6 we have $\operatorname{rank}\left(C_{2, K}\right)=2$, by [3] we have,
$h\left(p q_{1} q_{3}\right) \equiv h\left(p q_{2} q_{3}\right) \equiv 2(\bmod 4)$ and by lemma 3.1 we have $Q_{K}=4$, then $h_{2}(K)=4$. Consequently $C_{2, K}$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. The theorem follows.

4. Proof of theorem 1.1

Throughout this section we suppose that:
$C_{2, K} \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.

4.1. Necessary and sufficient conditions such that

 $K_{2}^{(1)} \neq K_{2}^{(2)}$The genus field of biquadratic field $K=$ $\mathbb{Q}\left(\sqrt{q_{1} q_{2}}, \sqrt{p q_{1} q_{3}}\right)$ is $K^{(*)}=\mathbb{Q}\left(\sqrt{p}, \sqrt{q_{1} q_{2}}, \sqrt{q_{1} q_{3}}\right)$. We introduce the biquadratic number field $L=\mathbb{Q}\left(\sqrt{q_{1} q_{3}}, \sqrt{p q_{1} q_{2}}\right)$, then $K^{(*)} / L$ is unramified. The 2-ideal class group of L is cyclic [see lemma 2.7], then the fields $K^{(*)}$ and L have the same Hilbert 2- class field $K_{2}^{(2)}$. Therefore

$$
h\left(K_{2}^{(1)}\right)=\frac{1}{2} h\left(K^{(*)}\right)=\frac{1}{4} h(L)
$$

Consequently

$$
K_{2}^{(1)} \neq K_{2}^{(2)} \Leftrightarrow 2\left|h\left(K_{2}^{(1)}\right) \Leftrightarrow 4\right| h\left(K^{(*)}\right) \Leftrightarrow 8 \mid h(L)
$$

Lemma 4.1. Let p, q_{1} and q_{2} be a distinct prime numbers such that, $p \equiv-q_{1} \equiv-q_{2} \equiv 1(\bmod 4)$,
and $\left(\frac{p}{q_{1}}\right)=\left(\frac{p}{q_{2}}\right)=\left(\frac{q_{2}}{q_{1}}\right)=1$. There exist X, Y, k, l such that $p q_{1}=k^{2} X^{2}+2 l X Y+2 m Y^{2},-q_{2}=l^{2}-2 k^{2} m$, denote $\alpha=\left(\frac{q_{1} q_{2}}{p}\right)_{4}$ and $\beta=\frac{2\left(k^{2} X+Y\right)}{p}$, we have:

$$
8 \mid h\left(p q_{1} q_{2}\right) \text { if and only if } \alpha=\beta=1 .
$$

Proof. See [3]
Let α and β the integres defined in theorem 5 we have a following theorem.
Theorem 4.2. Let p, q_{1}, q_{2} and q_{3} be a distinct prime numbers such that,
$p \equiv-q_{1} \equiv-q_{2} \equiv-q_{3} \equiv 1(\bmod 4)$.
If the biquadratic number field, $K=\mathbb{Q}\left(\sqrt{q_{1} q_{2}}, \sqrt{p q_{1} q_{3}}\right)$ has 2-ideal class group isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, then: $K_{2}^{(1)} \neq K_{2}^{(2)}$ if and only if $\left(\frac{q_{2}}{q_{1}}\right)=1$ and $\alpha=\beta=1$.
Proof. We have $K_{2}^{(1)} \neq K_{2}^{(2)} \Leftrightarrow 8 \mid h(L)$. Suppose now that the condition of theorem 3.4 are satisfied. A class number of L is given by:

$$
h(L)=\frac{Q_{L} h\left(p q_{1} q_{3}\right) h\left(p q_{1} q_{2}\right)}{4}
$$

By lemma 3.3, we have $Q_{L}=2$. On other hand by [3] we have,
$h\left(p q_{1} q_{3}\right) \equiv 2(\bmod 4)$, then $h(L)=h\left(p q_{1} q_{2}\right)$. The lemma 4.1 gives then necessary and sufficient conditions such that $K_{2}^{(1)} \neq K_{2}^{(2)}$.

4.2. Generators of 2-ideal class group of \mathbf{K}

Since $\left(\frac{q_{1} q_{2}}{p}\right)=1$ the ideal p splits completely in $\mathbb{Q}\left(\sqrt{q_{1} q_{2}}\right)$, we have $p o_{\mathbb{Q}\left(\sqrt{q_{1} q_{2}}\right)}=\mathcal{P}_{1} \mathcal{P}_{2}$ where $\mathcal{P}_{i}, i \in$ $\{1,2\}$ are two distinct prime ideals in $\mathbb{Q}\left(\sqrt{q_{1} q_{2}}\right)$. Moreover, since p is ramified in K then $\mathcal{P}_{i} o_{K}=\mathcal{Y}_{i}^{2}$, where $\mathcal{Y}_{i}, i \in\{1,2\}$ are two distinct prime ideals in K wich remain inert in $K^{(*)}=\mathbb{Q}\left(\sqrt{p}, \sqrt{q_{1} q_{2}}, \sqrt{q_{1} q_{3}}\right)$.
Theorem 4.3. Assume that the 2-ideal class group of K is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. Then the two ideal class $\left[\mathcal{Y}_{1}^{l}\right]$
and $\left[\mathcal{Y}_{2}^{l}\right]$ generates the 2-ideal class group of K. With l is the class number of $\mathbb{Q}\left(\sqrt{q_{1} q_{2}}\right)$.
Proof. 1) Show that \mathcal{Y}_{1}^{l} and \mathcal{Y}_{2}^{l} are not principal ideals. Since 1 is the class number of $\mathbb{Q}\left(\sqrt{q_{1} q_{2}}\right)$, the prime ideal \mathcal{P}_{1}^{l} and \mathcal{P}_{2}^{l} are principal. Therfore $\left[\mathcal{Y}_{1}^{l}\right]$ and $\left[\mathcal{Y}_{2}^{l}\right]$ are in $C_{2, K}$. Applying the Artin reciprocity laws in the extension $K^{(*)} / K$ we find that \mathcal{Y}_{1} and \mathcal{Y}_{2} are not principal ideals. It follows that \mathcal{Y}_{1}^{l} and \mathcal{Y}_{2}^{l} are not principal ideals.
2) show that $\mathcal{Y}_{1}^{l} \mathcal{Y}_{2}^{l}$ is not principal ideal.

We have $N_{K / \mathbb{Q}\left(\sqrt{q_{1} q_{2}}\right)}\left(\mathcal{Y}_{1}^{l} \mathcal{Y}_{2}^{l}\right)=\mathcal{P}_{1}^{l} \mathcal{P}_{2}^{l}=p^{l} o_{\mathbb{Q}\left(\sqrt{q_{1} q_{2}}\right)}$, supposing that $\mathcal{Y}_{1}^{l} \mathcal{Y}_{2}^{l}$ is principal then $\mathcal{Y}_{1}^{l} \mathcal{Y}_{2}^{l}=(a)$ with $a \in K$. So $N_{K / \mathbb{Q}\left(\sqrt{q_{1} q_{2}}\right)}=p^{l} o_{\mathbb{Q}\left(\sqrt{q_{1} q_{2}}\right)}$. It follows that there exists a unit u of $\mathbb{Q}\left(\sqrt{q_{1} q_{2}}\right)$ such that $p^{l} u$ is a norm in $K / \mathbb{Q}\left(\sqrt{q_{1} q_{2}}\right)$. Then we must have

$$
\left(\frac{p^{l} u, p q_{1} q_{3}}{\mathcal{P}_{1}}\right)=1(7)
$$

Using the properties of Hilbert's 2-th power norm residue symbol $\bmod \mathcal{P}_{1}$, we have $\left(\frac{-1, p q_{1} q_{3}}{\mathcal{P}_{1}}\right)=1$ and $\left(\frac{\varepsilon_{q_{1} q_{2}}, p q_{1} q_{3}}{\mathcal{P}_{1}}\right)=\left(\frac{q_{1}, p q_{1} q_{3}}{\mathcal{P}_{1}}\right)=1$. So

$$
\left(\frac{u, p q_{1} q_{3}}{\mathcal{P}_{1}}\right)=1 \text { for any unit } u \text { of } \mathbb{Q}\left(\sqrt{q_{1} q_{2}}\right)
$$

Moreover we have $\left(\frac{p^{l}, p q_{1} q_{3}}{\mathcal{P}_{1}}\right)=\left(-\frac{p}{q_{3}}\right)^{l}=(-1)^{l}=-1$, consequently $\left(\frac{p^{l} u, p q_{1} q_{3}}{\mathcal{P}_{1}}\right)=-1$ which is in contradiction with (7). Finally $\mathcal{Y}_{1}^{l} \mathcal{Y}_{2}^{l}$ is not principal ideal.

4.3. Determination of the 2-ideal class group of K which capitulates in $K^{(*)}$

We have $\left[\mathcal{Y}_{1}^{l}\right]$ and $\left[\mathcal{Y}_{2}^{l}\right]$ generates the 2-ideal class group of K . We denote by \mathcal{Q}_{1} and \mathcal{Q}_{2} the two prime ideals in $K^{(*)}$ such that $\mathcal{Y}_{1} o_{K^{(*)}}=\mathcal{Q}_{1}$ and $\mathcal{Y}_{2} o_{K^{(*)}}=\mathcal{Q}_{2}$.
Theorem 4.4. All 2-ideal classes group of K capitulate in $K^{(*)}$.

Proof. 1) show that $\mathcal{Y}_{1}^{l} \mathcal{Y}_{2}^{l}$ capitulates in $K^{(*)}$.
Since $\left(\frac{q_{1} q_{3}}{p}\right)=-1$ the number of prime ideals of $\mathbb{Q}\left(\sqrt{q_{1} q_{2}}\right)$ which ramify in $L^{\prime}=\mathbb{Q}\left(\sqrt{q_{1} q_{3}}, \sqrt{p}\right)$ is equal to 1 , by lemma 2.1 we have $\operatorname{rang}\left(C_{2, L^{\prime}}\right)=0$. Moreover, since p is ramified in $L^{\prime}=\mathbb{Q}\left(\sqrt{q_{1} q_{3}}, \sqrt{p}\right)$ we have $p o_{L}=\mathcal{P}^{\prime 2}$. The class number of L^{\prime} is odd, so \mathcal{P}^{\prime} is principal ideal. On other hand $\mathcal{P}^{\prime} o_{K^{(*)}}=\mathcal{Q}_{1} \mathcal{Q}_{2}$ consequently $\mathcal{Q}_{1} \mathcal{Q}_{2}$ is principal ideal. And we have $\mathcal{Q}_{1}^{l} \mathcal{Q}_{2}^{l}$ is principal ideal, it follows that $\mathcal{Y}_{1}^{l} \mathcal{Y}_{2}^{l}$ capitulates in $K^{(*)}$.
2) show that \mathcal{Y}_{1} and \mathcal{Y}_{2} capitulate in $K^{(*)}$.

Let $L=\mathbb{Q}\left(\sqrt{q_{1} q_{3}}, \sqrt{p q_{1} q_{2}}\right)$ since $\left(\frac{q_{1} q_{3}}{p}\right)=-1$ and p is ramified in L we have $p o_{L}=\mathcal{S}^{2}$ with \mathcal{S} is a prime ideal in L , therfore $\mathcal{S}_{K^{(*)}}=\mathcal{Q}_{1} \mathcal{Q}_{2}$. We have \mathcal{Q}_{1} and \mathcal{Q}_{2} are principal if and only if \mathcal{S} is principal, indeed: We now that if \mathcal{Q}_{1} is a principal ideal, then $N_{K^{(*)} / L}\left(\mathcal{Q}_{1}\right)=\mathcal{S}$ is a principal ideal. Conversely if
\mathcal{S} is a principal ideal, by Artin reciprocity law applied in the extension $K_{2}^{(2)} / L, \mathcal{S}$ split completely in $K_{2}^{(2)}$. Therefore \mathcal{Q}_{1} and \mathcal{Q}_{2} are splits completely in $K_{2}^{(2)}$, by Artin reciprocity law applied in the extension $K_{2}^{(2)} / K^{(*)}$ we have \mathcal{Q}_{1} and \mathcal{Q}_{2} are principal ideals. -show that \mathcal{S} is principal ideal.
We know that $\sqrt{\varepsilon_{q_{1} q_{3}}}=u_{1} \sqrt{q_{1}}+u_{2} \sqrt{q_{3}}$ with $u_{1}, u_{2} \in \mathbb{Q}$ [see proof of lemma 2.5] and $\sqrt{\varepsilon_{p q_{2} q_{3}}}=v_{1} \sqrt{q_{2}}+v_{2} \sqrt{p q_{3}}$ with $v_{1}, v_{2} \in \mathbb{Q}$ [see proof of lemma 3.1], therefore $\sqrt{p} \sqrt{\varepsilon_{q_{1} q_{3}} \varepsilon_{p q_{2} q_{3}}}$ is a integr of L. Since $p o_{L}=\left(\sqrt{p} \sqrt{\varepsilon_{q_{1} q_{3}} \varepsilon_{p q_{2} q_{3}}}\right)^{2}\left(\varepsilon_{q_{1} q_{3}} \varepsilon_{p q_{2} q_{3}}\right)^{-1} o_{L}=\mathcal{S}^{2}, \mathcal{S}$ is a principal ideal. We conclude that \mathcal{Q}_{1} and \mathcal{Q}_{2} are principal, then \mathcal{Y}_{1} and \mathcal{Y}_{2} capitulate in $K^{(*)}$. Hence the theorem 1.1 follows.

Acknowledgments

The First author would like to thank the editor and the anonymous reviewer for their invaluable comments and constructive suggestions used to improve the quality of the manuscript.

References

[1] A. AZIZI and A. MOUHIB, Sur le rang du 2-groupe de classes de $Q(\sqrt{m}, \sqrt{d})$ où $m=2$ ou un premier $p \equiv 1 \bmod (4)$, Trans. Amer. Math. Soc. Volume 353, Number 7, page 2741-2756.
[2] D. GORENSTEN, Finite Groups, second ed. Chelsa Puplishing Co. New York, 1980.
[3] P. KAPLAN, Sur le 2-groupe des classes d'idaux des corps quadratiques, J. Reine Angew. Math. 283/284 (1976), 313-363.
[4] H. Kisilevsky, Number fields with class number congruent to 4 mod 8 and Hilbert's theorem 94, J. Number Theory 8, (1976), 272-279.
[5] A. MOUHIB,On the parity of the class number of multiquadratic number fields, J. of Number Theory 129 (2009), 1205-1211.
[6] O. TAUSSKY,A Remark on the Class Fields Tower, J. London Math. Soc. 12 (1937). 82-85.
[7] H. WADA,On the class number and unit group of certain algebraic number fields, J. Fac. Sci. Univ. Tokyo Set. I 13 (1966), 201-209.

[^0]: A.Elmahi is with the University of Mohamed, BP. 71760000 , Oujda, Morocco (e-mail: elmahi.abdelkader@yahoo.fr).

