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Abstract—Let K = Q(
√
q1q2,

√
pq1q3), be real biquadratic

number field where, p, q1, q2 and q3 be distinct prime numbers
with p ≡ −q1 ≡ −q2 ≡ −q3 ≡ 1 (mod 4). Let K

(1)
2 be the

Hilbert 2-class field of K. Let K
(2)
2 be the Hilbert 2-class

field of K
(1)
2 and K(∗) the genus field of K. We suppose that

K
(1)
2 6= K(∗) and Gal(K

(1)
2 /K) ∼= Z/2Z × Z/2Z. We study

the capitulation problem of the 2-ideal classes of K in the
sub-extensions of K

(1)
2 /K and we determine the structure of

Gal(K
(2)
2 /K).

Keywords− fundamental unit, Hilbert 2-class field,
ideal class group, class number,genus field.

1. Introduction

Let K be an algebraic number field and CK its ideal
class group in the ordinary sence. Suppose L is a finite
algebraic number extension of K. Then there is a canonical
homomorphism

j : CK → CL

induced by extension of ideals. Then ker(j) consists of those
ideal classes in K which capitulate in L. One of the main
goals in capitulation theory is to determine ker(j).

If K(1)
2 is the Hilbert 2-class field of K, then by class

field theory the Galois group Gal(K(1)
2 /K) and the 2-class

group C2,K of K are canonically isomorphic. Let K(n)
2 be

the Hilbert 2-class field of K(n−1)
2 , then K(n)

2 /K is a Galois
extension for each non negative integer n and

K ⊂ K(1)
2 ⊂ K(2)

2 ⊂ ....... ⊂ K(n)
2 ⊂ ........

is the 2-Hilbert class tower of field K. terminates at K(1)
2

or K(2)
2 [10].

In the following, we give some known results about
the structure of Galois group Gal(K

(2)
2 /K) where C2,K

is isomorphic to Z/2Z × Z/2Z (see, for instance, [4],
Section 1). Let K be an algebraic number field such that
C2,K ' Z/2Z × Z/2Z, and let G be the Galois group of
K

(2)
2 /K. Then if G′ is the commutator subgroup of G, we

have G′ = Gal(K
(2)
2 /K

(1)
2 ), and

G/G′ ' Gal(K(1)
2 /K) ' Z/2Z× Z/2Z.

Let Qm, Dm, Sm be the quaternion, dihedral and
semidihedral groups of order 2m, So that in term of
generators and relations,

Qm = 〈x, y |x2m−2

= y2 = a, a2 = 1, y−1xy = x−1〉;

Dm = 〈x, y |x2m−1

= y2 = 1, y−1xy = x−1〉;

Sm = 〈x, y |x2m−1

= y2 = 1, y−1xy = x2
m−2−1〉.

By [2, Theorem 4.5, Chap 5] we have G is isomorphic
to Dm, Qm or Sm. The commutator subgroup G′ of G is
always cyclic: G′ = 〈x2〉. The group G has exactly three
sub-groups of index 2. Namely, 〈x〉; 〈x2, y〉 and 〈x2, xy〉.
When G is not the quaternion group of order 8, only one of
the three maximal sub-groups of G is cyclic. When m ≥ 4
the other two maximal sub-groups of G are not abelian and
their maximal abelian factor groups are again isomorphic to
Z/2Z× Z/2Z. Of course, when G is the quaternion group
of order 8 its three maximal subgroups are cyclic and when
G is the dihedral group of order 8, its three sub-groups
are abelian. None of the proper factor groups of G is of
quaternion type. According to what we just said, the Hilbert
2-class field tower of K terminates in at most two steps.
If K(1)

2 6= K
(2)
2 , then the Galois group Gal(K

(2)
2 /K

(1)
2 )

is cyclic and Gal(K
(2)
2 /K) is a quaternion, dihedral or

semidihedral group.
Let K = Q(

√
q1q2,

√
pq1q3) be a biquadratic number field

where p ≡ −q1 ≡ −q2 ≡ −q3 ≡ 1 (mod 4). In this paper,
we first give a rank for some reel biquadratic number fields.
Then, in section 3 we give the Hasse unit index for some
real biquadratic number fields and we give the list of real
biquadratic number field K such that its 2- ideal class group
of K is isomorphic to Z/2Z × Z/2Z(Theoreme 3.4). In
the last section we give the 2-ideal classes of K, which
capitulate in the genus field of K. Consequently we prove
the following:

Theorem 1.1. Let p, q1, q2, q3 be distinct primes with
p ≡ −q1 ≡ −q2 ≡ −q3 ≡ 1 (mod 4) and K =
Q(
√
q1q2,

√
pq1q3). Assume that the 2-ideal class group of

K is isomorphic to Z/2Z× Z/2Z, then:
1. If K(2)

2 = K
(1)
2 we have Gal(K(2)

2 /K) is abelien.
2. If K(1)

2 6= K
(2)
2 we have Gal(K(2)

2 /K) is dihedral.
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2. Rank of 2-ideal class group of some real
biquadratic number fields

The following notations will be used throughout the
paper:

K a real biquadratic number field
k=Q(

√
m) a quadratic subfield of K with

odd class number
E the group of units of k
N the norm map
r the number of primes of k which
are ramified in K e a positive integer defined by
2e = [E : E ∩N(K∗)]
εm the fundamental unit of Q(

√
m)

h(K) the class number of K
h2(K) the 2-part of h(K)
h(m) the class number for the quadratic
number field Q(

√
m)

C2,K the 2-ideal class group of K
K(∗) the genus field of K
K

(1)
2 the Hilbert 2-class field of K

K
(2)
2 the Hilbert 2-class field of K(1)

2
QK the hasse unit index of the
biquadratic number field K
(a,dP ) the Hilbert’s 2-th power
norm residue symbol mod P

Lemma 2.1. We keep the same notation as above, the rank
of C2,K is equal to r-e-1.

Proof. See [1]

Remark 2.2. We have:
1) e=0 if and only if -1 and εm are norms in the extension
K/k.
2) e=1 if and only if -1 is a norm and εm is not a norm, or
-1 is not a norm and εm or −εm is a norm in the extension
K/k.
2) e=2 if and only if -1, εm and −εm are not norms in the
extension K/k.

Lemma 2.3. Let F be a real quadratic number field
with fundamental unit ε and discriminant D. Suppose that
NF/Q(ε) = 1. Then there exists a positive square free
integer m dividing D such that m ε is a square in F.

Proof. See [5]

Remark 2.4. In the proof of lemma 2.3 [see 5], the integer
m is norm in the extension F/Q.

Lemma 2.5. Let p, q1, q2, q3 be distinct primes
with p ≡ −q1 ≡ −q2 ≡ −q3 ≡ 1 (mod 4), and
K = Q(

√
q1q2,

√
pq1q3). Then, we have:

1) e=0 if and only if one of the following conditions is
satisfied:
(i) ( q1q2p ) = ( q1q2q3

) = −1.
(ii) ( q1p ) = ( q2p ) = −(

q1q2
q3

) = 1.
1) e=1 if and only if one of the following conditions is

satisfied:
(i) ( q1q2p ) = −( q1q2q3

) = −1.
(ii) ( q1p ) = ( q2p ) = ( q1q2q3

) = −1.
(iii) ( q1p ) = ( q2p ) = ( q1q2q3

) = 1.

Proof. The discriminant of Q(
√
q1q2) is equal to q1q2, by

lemma 2.3 there exists an integer m|q1q2 such that m is a
norm in the extension Q(

√
q1q2)/Q [see remark 2.4] and√

mεq1q2 ∈ Q(
√
q1q2). Since εq1q2 is the fundamental unit

of Q(
√
q1q2) then m must be contained in {q1, q2}. Either

way, we can conclude that:

√
q1εq1q2 ∈ Q(

√
q1q2) or

√
q2εq1q2 ∈ Q(

√
q1q2) (1)

Consequently εq1q2 = q1u
2 or εq1q2 = q1v

2 with u and v
are in Q(

√
q1q2).

It is easy to see that the primes of Q(
√
q1q2) ramified in K

are exactly those lying above p and q3. Denote S = {p, q3},
and P a prime ideal of Q(

√
q1q2) which is ramified in K

lying above ` ∈ S,
-if ` remain inert in Q(

√
q1q2), then we have:

(
−1, pq1q3
P

) = (
NQ(

√
q1q2)/Q(−1), pq1q3

`
) = 1

(
εq1q2 , pq1q3
P

) = (
NQ(

√
q1q2)/Q(εq1q2), pq1q3

`
) = 1

-if ` is decomposed in Q(
√
q1q2), then we have:

(
εq1q2 , pq1q3
P

) = (
q1u

2, pq1q3
P

) = (
q1, pq1q3
P

) = (
q1
`
).

Using remark 2.2, the lemma 2.5 follows immediately.

Lemma 2.6. Let p, q1, q2, q3 be distinct prime numbers
with p ≡ −q1 ≡ −q2 ≡ −q3 ≡ 1 (mod 4) and K =
Q(
√
q1q2,

√
pq1q3). Then the 2-ideal class group of K is of

rank equal to 2 if and only if the following condition is
satisfied:

(
p

q1
) = (

p

q2
) = 1,

Proof. By lemma 2.1 the rank of C2,K is equal to r-e-1. The
positive integer e is given by lemma 2.5. One can compute
the positive integer r and the lemma follows.

Lemma 2.7. Let p, q1, q2, q3 be distinct prime num-
bers with p ≡ −q1 ≡ −q2 ≡ −q3 ≡ 1 (mod 4) and
L = Q(

√
q1q3,

√
pq1q2). Then the 2-ideal class group of

L is cyclic if and only if one of the following conditions is
satisfied:

1) ( q1q3p ) = −1.
2) ( q1p ) = ( q3p ) = ( q1q2q3

) = −1.
3) ( q1p ) = ( q3p ) = −(

q1
q2
) = −( q3q2 ) = −1.

4) ( q1p ) = ( q3p ) = ( q1q2 ) = ( q3q2 ) = −1.

Proof. With the same technique used in proof for lemma
2.5, one can compute a positive integer e for biquadratic
field L, and using lemma 2.1 we verify that the 2-ideal class
group of L is of rank equal to 1, if and only if one of
condition 1), 2), 3), 4) of lemma 2.7 is satisfied.
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3. The Hasse unit index for some real bi-
quadratic fields

Lemma 3.1. Let p, q1, q2 and q3 be a distinct prime
numbers such that, p ≡ −q1 ≡ −q2 ≡ −q3 ≡ 1(mod 4) and
( p
q1
) = ( p

q2
) = −( p

q3
) = 1. Then the biquadratic number

field, K = Q(
√
q1q2,

√
pq1q3) contains the following units:

√
εq1q2εpq1q3 ,

√
εq1q2εpq2q3

Consequently QK = 4.

Proof. The discriminant of Q(
√
pq1q3) is equal to pq1q3,

then there exists an integer m|pq1q3 such that √mεpq1q3 ∈
Q(
√
pq1q3). Since εpq1q3 is the fundamental unit of

Q(
√
pq1q3) then m /∈ {1, pq1q3}. On other hand since

( p
q3
) = −1 then p, q3, q1q3, pq3 are not a norms in the

extension Q(
√
pq1q3)/Q so m /∈ {p, q3, pq3, q1q3} and

we have √mεpq1q3 ∈ Q(
√
pq1q3) such that m|pq1q3 and

m /∈ {1, p, q3, pq3, q1q3, pq1, pq1q3}.
Either way we can conclude that:

√
q1εpq1q3 ∈ Q(

√
pq1q3) (2)

With the same reason we have:
√
q2εpq2q3 ∈ Q(

√
pq2q3) (3)

Consequently,using (1), (2) and (3), we obtain that the unit√
εq1q2εpq1q3 ,

√
εq1q2εpq2q3 are contained in K consequently

QK = 4.

Lemma 3.2. Let p, q1, q2 and q3 be distinct prime numbers
such that, p ≡ −q1 ≡ −q2 ≡ −q3 ≡ 1(mod4), and
( p
q1
) = ( p

q1
) = ( p

q3
) = 1. Then the biquadratic number

field, K = Q(
√
q1q2,

√
pq1q3) contains exactly one of the

following units:
√
εq1q2εpq1q2 ,

√
εpq2q3εpq2q3 ,

√
εq1q2εpq1q2εpq2q3

Consequently, QK = 2.

Proof. The discriminant of Q(
√
pq1q2) is equal to pq1q2,

then there exists an integer m|pq1q2 such that,√
mεpq1q2 ∈ Q(

√
pq1q2), since εpq1q2 is the fundamental

unit of Q(
√
pq1q2) then m /∈ {1, pq1q2}, therefore:
√
mεpq1q2 ∈ Q(

√
pq1q2) (4)

With m ∈ {p, q1, q2, pq1, pq2, q1q2} similarly we have,

√
mεpq1q3 ∈ Q(

√
pq1q3) (5)

With m ∈ {p, q1, q3, pq1, pq3, q1q3} consequently using (1),
(4) and (5) we obtain that exactly one of the units

√
εq1q3εpq1q2 ,

√
εpq1q2εpq2q3 ,

√
εq1q2εpq1q2εpq2q3

is contained in K, so QK = 2.

Lemma 3.3. Let p, q1, q2 and q3 be distinct prime numbers
such that, p ≡ −q1 ≡ −q2 ≡ −q3 ≡ 1(mod4), and

( p
q1
) = ( p

q2
) = −( p

q3
) = 1. Then the biquadratic number

field, L = Q(
√
q1q3,

√
pq1q2) contains exactly one of the

following units:
√
εq1q3εpq1q2 ,

√
εpq1q2εpq2q3 ,

√
εq1q2εpq1q2εpq2q3

Consequently QL = 2.

Proof. We have:
√
q1εq1q3 ∈ Q(

√
q1q3) (6)

Using (3), (4) and (6) we obtain that exactly one of the
unit,√

εq1q3εpq1q2 ,
√
εpq1q2εpq2q3 ,

√
εq1q2εpq1q2εpq2q3

is contained in L so QL = 2.

As a consequence we have the list of real biquadratic
number fields K = Q(

√
q1q2,

√
pq1q3) such that C2,K is

isomorphic to Z/2Z× Z/2Z.

Theorem 3.4. Let p, q1, q2 and q3 be distinct prime num-
bers such that, p ≡ −q1 ≡ −q2 ≡ −q3 ≡ 1 (mod 4) and
let K = Q(

√
q1q2,

√
pq1q3) be a biquadratic number field.

The 2-ideal class group of K is isomorphic to Z/2Z×Z/2Z
if and only if the following condition is satisfied:

(
p

q1
) = (

p

q2
) = −( p

q3
) = 1

Proof. In [7] the class number for K is given by:

h(K) =
QKh(pq1q3)h(pq2q3)

4

assume that C2,K ' Z/2Z×Z/2Z, then rank(C2,K)= 2. By
lemma 2.6 we have

(
p

q1
) = (

p

q2
) = 1.

1) If ( p
q3
) = 1, by [3] we have 4|h(pq1q3) and 4|h(pq2q3).

On other hand by lemma 3.2, QK = 2, therefore
8|h(K). Consequently C2,K is not isomorphic to
Z/2Z× Z/2Z.

2) If ( p
q3
) = −1, by [3] we have,

h(pq1q3) ≡ h(pq2q3) ≡ 2 (mod 4) and by lemma 3.1
we have QK = 4, then h2(K) = 4. The 2-ideal class
group of K is isomorphic to Z/2Z× Z/2Z.

Suppose now that ( p
q1
) = ( p

q2
) = −( p

q3
) = 1, by lemma 2.6

we have rank(C2,K)= 2, by [3] we have,
h(pq1q3) ≡ h(pq2q3) ≡ 2 (mod 4) and by lemma 3.1 we
have QK = 4, then h2(K) = 4. Consequently C2,K is
isomorphic to Z/2Z× Z/2Z. The theorem follows.

4. Proof of theorem 1.1

Throughout this section we suppose that:
C2,K ' Z/2Z× Z/2Z.
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4.1. Necessary and sufficient conditions such that
K

(1)
2 6= K

(2)
2

The genus field of biquadratic field K =
Q(
√
q1q2,

√
pq1q3) is K(∗) = Q(

√
p,
√
q1q2,

√
q1q3).

We introduce the biquadratic number field
L = Q(

√
q1q3,

√
pq1q2), then K(∗)/L is unramified.

The 2-ideal class group of L is cyclic [see lemma 2.7],
then the fields K(∗) and L have the same Hilbert 2- class
field K(2)

2 . Therefore

h(K
(1)
2 ) =

1

2
h(K(∗)) =

1

4
h(L)

Consequently

K
(1)
2 6= K

(2)
2 ⇔ 2|h(K(1)

2 )⇔ 4|h(K(∗))⇔ 8|h(L)

Lemma 4.1. Let p, q1 and q2 be a distinct prime numbers
such that, p ≡ −q1 ≡ −q2 ≡ 1 (mod4),
and ( p

q1
) = ( p

q2
) = ( q2q1 ) = 1. There exist X, Y, k, l such that

pq1 = k2X2 + 2lXY + 2mY 2,−q2 = l2 − 2k2m, denote
α = ( q1q2p )4 and β = 2(k2X+Y )

p , we have:

8|h(pq1q2) if and only if α = β = 1.

Proof. See [3]

Let α and β the integres defined in theorem 5 we have
a following theorem.

Theorem 4.2. Let p, q1, q2 and q3 be a distinct prime
numbers such that,
p ≡ −q1 ≡ −q2 ≡ −q3 ≡ 1(mod4).
If the biquadratic number field, K = Q(

√
q1q2,

√
pq1q3)

has 2-ideal class group isomorphic to Z/2Z×Z/2Z, then:
K

(1)
2 6= K

(2)
2 if and only if ( q2q1 ) = 1 and α = β = 1.

Proof. We have K(1)
2 6= K

(2)
2 ⇔ 8|h(L). Suppose now that

the condition of theorem 3.4 are satisfied. A class number
of L is given by:

h(L) =
QLh(pq1q3)h(pq1q2)

4

By lemma 3.3, we have QL = 2. On other hand by [3] we
have,
h(pq1q3) ≡ 2 (mod 4), then h(L) = h(pq1q2). The lemma
4.1 gives then necessary and sufficient conditions such that
K

(1)
2 6= K

(2)
2 .

4.2. Generators of 2-ideal class group of K

Since ( q1q2p ) = 1 the ideal p splits completely in
Q(
√
q1q2), we have poQ(

√
q1q2) = P1P2 where Pi, i ∈

{1, 2} are two distinct prime ideals in Q(
√
q1q2). More-

over, since p is ramified in K then PioK = Y2
i , where

Yi, i ∈ {1, 2} are two distinct prime ideals in K wich remain
inert in K(∗) = Q(

√
p,
√
q1q2,

√
q1q3).

Theorem 4.3. Assume that the 2-ideal class group of K is
isomorphic to Z/2Z×Z/2Z. Then the two ideal class [Y l

1]

and [Y l
2] generates the 2-ideal class group of K. With l is

the class number of Q(
√
q1q2).

Proof. 1) Show that Y l
1 and Y l

2 are not principal ideals.
Since l is the class number of Q(

√
q1q2), the prime

ideal P l
1 and P l

2 are principal. Therfore [Y l
1] and [Y l

2]
are in C2,K . Applying the Artin reciprocity laws in
the extension K(∗)/K we find that Y1 and Y2 are
not principal ideals. It follows that Y l

1 and Y l
2 are not

principal ideals.
2) show that Y l

1Y l
2 is not principal ideal.

We have NK/Q(
√
q1q2)(Y l

1Y l
2) = P l

1P l
2 = ploQ(

√
q1q2),

supposing that Y l
1Y l

2 is principal then Y l
1Y l

2 = (a) with
a ∈ K. So NK/Q(

√
q1q2) = ploQ(

√
q1q2). It follows that

there exists a unit u of Q(
√
q1q2) such that plu is a

norm in K/Q(
√
q1q2). Then we must have

(
plu, pq1q3
P1

) = 1 (7).

Using the properties of Hilbert’s 2-th power norm
residue symbol mod P1, we have (−1,pq1q3P1

) = 1 and
(
εq1q2

,pq1q3
P1

) = ( q1,pq1q3P1
) = 1. So

(
u, pq1q3
P1

) = 1 for any unit u of Q(
√
q1q2).

Moreover we have (p
l,pq1q3
P1

) = (− p
q3
)l = (−1)l = −1,

consequently (p
lu,pq1q3
P1

) = −1 which is in contradic-
tion with (7). Finally Y l

1Y l
2 is not principal ideal.

4.3. Determination of the 2-ideal class group of K
which capitulates in K(∗)

We have [Y l
1] and [Y l

2] generates the 2-ideal class group
of K. We denote by Q1 and Q2 the two prime ideals in
K(∗) such that Y1oK(∗) = Q1 and Y2oK(∗) = Q2.

Theorem 4.4. All 2-ideal classes group of K capitulate in
K(∗).

Proof. 1) show that Y l
1Y l

2 capitulates in K(∗).
Since ( q1q3p ) = −1 the number of prime ideals of
Q(
√
q1q2) which ramify in L′ = Q(

√
q1q3,

√
p) is

equal to 1, by lemma 2.1 we have rang(C2,L′) = 0.
Moreover, since p is ramified in L′ = Q(

√
q1q3,

√
p)

we have poL = P ′2. The class number of L′ is odd, so
P ′ is principal ideal. On other hand P ′oK(∗) = Q1Q2

consequently Q1Q2 is principal ideal. And we have
Ql

1Ql
2 is principal ideal, it follows that Y l

1Y l
2 capitu-

lates in K(∗).
2) show that Y1 and Y2 capitulate in K(∗).

Let L = Q(
√
q1q3,

√
pq1q2) since ( q1q3p ) = −1 and p

is ramified in L we have poL = S2 with S is a prime
ideal in L, therfore SoK(∗) = Q1Q2. We have Q1 and
Q2 are principal if and only if S is principal, indeed:
We now that if Q1 is a principal ideal, then
NK(∗)/L(Q1) = S is a principal ideal. Conversely if
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S is a principal ideal, by Artin reciprocity law applied
in the extension K

(2)
2 /L, S split completely in K

(2)
2 .

Therefore Q1 and Q2 are splits completely in K
(2)
2 ,

by Artin reciprocity law applied in the extension
K

(2)
2 /K(∗) we have Q1 and Q2 are principal ideals.

-show that S is principal ideal.
We know that √εq1q3 = u1

√
q1 + u2

√
q3 with

u1, u2 ∈ Q [see proof of lemma 2.5] and√
εpq2q3 = v1

√
q2 + v2

√
pq3 with v1, v2 ∈ Q

[see proof of lemma 3.1], therefore√
p
√
εq1q3εpq2q3 is a integr of L. Since

poL = (
√
p
√
εq1q3εpq2q3)

2(εq1q3εpq2q3)
−1oL = S2, S

is a principal ideal. We conclude that Q1 and Q2 are
principal, then Y1 and Y2 capitulate in K(∗). Hence
the theorem 1.1 follows.
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d) où m = 2 ou un premier p ≡ 1 mod(4), Trans. Amer.

Math. Soc. Volume 353, Number 7, page 2741-2756.

[2] D. GORENSTEN, Finite Groups, second ed. Chelsa Puplishing Co.
New York, 1980.

[3] P. KAPLAN, Sur le 2-groupe des classes d’idaux des corps quadra-
tiques, J. Reine Angew. Math. 283/284 (1976), 313-363.

[4] H. Kisilevsky, Number fields with class number congruent to 4 mod 8
and Hilbert’s theorem 94, J. Number Theory 8, (1976), 272-279.

[5] A. MOUHIB,On the parity of the class number of multiquadratic
number fields, J. of Number Theory 129 (2009), 1205-1211.

[6] O. TAUSSKY,A Remark on the Class Fields Tower, J. London Math.
Soc. 12 (1937). 82-85.

[7] H. WADA,On the class number and unit group of certain algebraic
number fields, J. Fac. Sci. Univ. Tokyo Set. I 13 (1966), 201-209 .

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 11, 2017

ISSN: 1998-0140 182




